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An influence matrix technique is proposed to enforce both the con- 
tinuity equation and the definition of the vorticity in the treatment of the 
2D incompressible Navier-Stokes equations. It is shown and supported 
by numerical experiments that at each time step the divergence is 
actually equal to zero within machine accuracy. The same result is 
obtained for the definition of the vorticity. 0 1992 Academc Press. Inc 

1. INTRODUCTION 

The vorticity-velocity formulation of the Navier-Stokes 
equations is very familiar to people working in the field of 
vortex or/and particle methods but is less popular in the 
context of methods involving grids (finite differences, finite 
elements, . ..) despite the fact that it has been used for more 
than 10 years [3,4]. It seems, however, that this formula- 
tion is, to a growing number of people, an attractive alter- 
native to formulations in primitive variables or in terms of 
the vorticity and of a vector potential for the resolution of 
the 3D Navier-Stokes equations. This interest is due to 
several reasons [ 1, 23, but it seems that the main one is 
linked to easier treatment of the boundary conditions since 
the pressure is no longer part of the resolution. One may 
also say that this formulation is closer to physical reality, 
especially in the case of vortex dominated flows [S] and 
that, in the case of external flows, conditions at infinity are 
easier to implement than those for the pressure. Another 
desirable feature is that this formulation is valid in both two 
and three dimensions. 

A real interest in this formulation has grown recently 
owing to the increasing power of computers which permits 
tackling 3D flows. During this period, the need of an 
efficient alternative to the formulation using the primitive 
variables of the NavierStokes equations was felt 
increasingly necessary. Most of the studies using the 
vorticity-velocity formulation have been concerned with 
internal incompressible 2D or 3D flows [3-8, 12, 131 but 
applications to external flows or to semi-bounded flows can 

also be found [7,9, 111. Recently, additional characteristics 
of the fluid such as compressibility, have been taken into 
account [2]. 

The set of equations to be solved always includes a 
vorticity transport equation which is derived by taking the 
curl of the momentum equation. Concerning the remaining 
equations, two alternative approaches may be considered: 

(1) Solve the continuity and the vorticity definition 
equations. 

(2) Solve Poisson equations for the components of the 
velocity. 

Among the previous authors, only Gatski et al. [6,7] 
and Osswald et al. [S] used the first approach, whereas in 
all the other studies Poisson equations were used. As noted, 
for instance, by [9], the major problem that arises when 
using the formulation with Poisson equations is the satis- 
faction of the continuity equation. In this paper, that is 
restricted to 2D flows, it is shown that satisfying the 
continuity equation is equivalent to enforcing the definition 
of the vorticity as the curl of the velocity field and that these 
requirements reduce to boundary conditions coupling the 
velocity and the vorticity or the divergence. This fact was 
already pointed out by Cottet [lo] in the context of vortex 
methods. 

To overcome the difficulties involved by this coupling 
at the boundaries, two influence matrix techniques are 
presented. The influence matrix technique, also known as 
the capacitance matrix technique, has been widely used to 
solve systems of elliptic linear equations for which either the 
domain of integration has irregular boundaries [ 1 S-181, or 
boundary conditions are not available for all the unknowns 
despite theorems proving existence and uniqueness [ 191, or 
to solve elliptic vector problems with coupled boundary 
conditions for the components [27]. In all cases, the techni- 
que makes use of the principle of superposition of solutions 
to elementary problems. A linear combination of these 
elementary solutions is then sought in order to ensure 
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additional conditions which are not taken into account in 
the elementary problems but have to be fullfilled to obtain 
a solution to the initial problem. All these techniques may 
be seen as applications of numerical Green’s functions. 

Kleiser and Schumann [19] were apparently the first to 
use the influence matrix technique for solving the incom- 
pressible Navier-Stokes equations in primitive variables. 
Their work was restricted to 3D flows with two directions of 
periodicity and it used a spectral Fourier-Tchebychev 
method. Later, this technique was extended by LeQuere and 
Alziary de Roquefort [20; 211 to 2D problems without 
periodicity, using Tchebychev expansions in both direc- 
tions. In these studies, the incompressibility constraint is 
ensured by expressing a linear relationship between a trial 
distribution of pressure along the boundary and the value of 
the divergence along the same boundary. A generalization 
of this technique, especially in cylindrical coordinates, can 
be found in Tuckerman [22]. 

In addition to these studies in which the Navier-Stokes 
equations were cast in primitive variables, the influence 
matrix technique was also used to overcome the lack of 
boundary conditions for w, when solving 2D or axisym- 
metric Navier-Stokes equations formulated in terms of the 
stream function Y and of the vorticity function o [23-251. 
In this case, the influence matrix expresses a linear rela- 
tionship between the distribution of vorticity and tangential 
velocity along the boundaries. The advantage is that a 
strong coupling at the same time level between Y and o is 
obtained which is lacking in the usual methods, where a 
time shift has to be introduced at the boundaries in order to 
decouple the equations. 

It is important to note that the Kleiser and Schumann 
method was found to be equivalent to the integral condi- 
tions for the pressure which have been established by 
Quartapelle and Napolitano [26] and Quartapelle [28] 
and which may be considered to some extent as an exten- 
sion to Navier-Stokes problems of the method of Glowinski 
and Pironneau [29] which was originally designed for 
Stokes flows. 

One common feature of these techniques is that at each 
time level IZ A?, the boundary values of the unknowns 
(pressure or vorticity) are computed through the multiplica- 
tion of a N, vector by a dense N,x N, matrix, where N, 
denotes the number of boundary nodes involved in the 
discretization process. This matrix does not depend upon 
the time level and can therefore be computed and inverted 
in a preprocessing stage. 

In this paper, two influence matrix methods are proposed 
to solve the 2D incompressible NavierStokes equations in 
vorticity-velocity formulation. They are designed to make 
sure that both the continuity equation V. v =0 and the 
definition of the vorticity function V x v = wk are.satislied at 
the same time level. This strong coupling between the 
velocity and the vorticity which is not found in most of the 

previous studies and which is particularly important in 
the case of unsteady flows, formally maintains the temporal 
accuracy of the time discretization. The basic numerical 
method is a standard second-order finite difference scheme 
using a regular staggered MAC grid. Numerical evidence of 
the efficiency of the present method is supported by the 
resolution of two flows: the driven square cavity and the 
axisymmetric flow in a cylindrical container with a rotating 
lid. In both cases, the results are in good agreement with the 
previously known results and the divergence field is actually 
shown to be zero within machine accuracy. 

2. THE VORTICITY-VELOCITY FORMULATION 

This paper is restricted to the case of a bounded simply 
connected domain 9 with boundary r. The additional 
problems that arise when considering multiply connected 
domains are adressed in Daube et al. [ 141. Taking the curl 
of the momentum equation and taking into account the 
continuity equation yields 

am ;;t+v.(wv)=~v20 in 3 

Vxv=wk in 9 

v.v=o in 9 

v=vy on r=a9; 

(2) 

(3) 

(4) 

v must also satisfy a compatibility relation, 

J v.ndo=O, 
I- 

(5) 

where v is the velocity vector, w is the vorticity function, and 
Re is the Reynolds number. The vector k is a unit vector 
normal to the plane of the flow and n is a unit vector normal 
to the boundary ZY In addition, the initial conditions must 
satisfy (2)-(5). Equation (2) is often replaced by a second- 
order equation which is obtained by using the well-known 
vector relation defining the vector laplacian, 

Tf=V(V.f)-Vx(Vxf) (6) 

that is valid for any vector field f. Using (6) in conjunction 
with the continuity equation (3) yields 

V2v= -Vx(ok)=kxVo. (7) 

Equations (1) and (7) with boundary conditions (4) are 
not equivalent to the original system (1 to 4) and the major 
difficulty arises from this point. In fact, additional condi- 
tions have to be written in order to satisfy Eqs. (3) and (2) 
everywhere. This point will be made clearer in the next 
sections. 
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3. TEMPORAL DISCRETIZATION Concerning this system, it must be noticed that: 

As usual with the influence matrix techniques, a semi- 
implicit scheme has to be used to advance the solution in 
time. To this end the classical Adams-Bashforth-Crank- 
Nicolson (ABCN) scheme was chosen. It consists in writing 
the transport equation (1) at the time level (n + 4) Ar and 
evaluating the diffusion terms implicitly and the convective 
terms explicitly at this time level by means of an Adams- 
Bashforth extrapolation. At each time step, a Helmholtz 
equation has to be solved, together with the continuity 
equation and the vorticity definition. More precisely, the 
following system is obtained, where the superscripts denote 
the time levels at which the variables are considered and I is 
the identity operator: 

in 9 

(1) It has an infinite number of solutions. 

(2) The solution of the original problem (8) is obviously 
a solution of (9). 

(3) The function w is not necessarily the vorticity of the 
vector field v. 

(4) The divergence of v is not necessarily equal to 0. 

We now establish the propositions-that can be in part 
found in Cottet [ lo]-which constitute the foundations of 
the influence matrix techniques that we propose and that 
rely upon a linear relationship between the distribution of w 
on the boundary and the values of either the divergence V . v 
or (V x v) k - o on this boundary. 

4.1. Enforcing the Continuity Equation 

Vxv(“+‘)=o(“+‘)k in 3 PROPOSITION 1. A necessary and sufficient condition for 

v.y(“+l)=o in 9 
a solution (v, o) of (9) to satisfy the additional condition 

(” V.v=Oingis 
v(“+‘)=vr 

s 
V n+l .nda=O. 

r 

on r 
v.v=o on r=a9. (10) 

ProoJ Let (v, o) be a solution of (9). From relation (7) 
it follows that 

The use of a semi-implicit time discretization always leads 
to a system of the form (8). In the particular case of the V(V.v)= -Vx(ok-Vxv) 

ABCN scheme, we have 
the divergence of which yields 

2Re g=-’ 
At ’ 

V2(V.v)=0 in 9. 

S’“’ = (a1 +V’) co@) The scalar function V . v is thus a solution of the Laplace 

- Re(3V. (WV)@) -V . (wv)(~~ I’). equation. Therefore, a necessary and sufficient condition for 
the divergence of the velocity to be zero everywhere is 
that it vanishes on the boundary, i.e., relation (10) be 

Remark. Throughout the paper, we will assume the satisfied. 1 
existence and uniqueness of the solutions of system (8). 

PROPOSITION 2. Let (v, w) be a solution of (9) which 
satisfies (10) (recall that w k is not necessarily the curl of v). 

4. THE LAPLACIAN OF THE VELOCITY Defining { by V x v = [k, the following relation holds: 

In order to solve second-order elliptic equations, we [ - w = constant in 2 
introduce the relation (7) into the system (8) in place of one 
or both Eqs. (3) and (2). In doing so, we have to make sure Proof: The definition for [ with the relations (6) and (7) 
that the resulting set of equations is equivalent to the yields 
original system. This section is devoted to this point. 

With this in mind consider some solution (v, o) of the V2v=V(V.v)+kxV[=kxVo. 
system: 

(aI-V*)W=S in 3 
Since v satisfies the continuity equation it follows that 
V(i - w) = 0 in 9, which proves the proposition. 1 

V*v=kxVo in 9 (9) Propositions 1 and 2 have the following immediate conse- 
v=vr on r. quence: 
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COROLLARY 3. The initial problem (8) is equivalent to 
the following one: 

(aI-V)o=S in 9 

V2v=kxVw in 9 

v=vr on r (11) 

v.v=o on I- 

[=OJ at one point of 9. 

4.2. Enforcing the Definition of the Vorticity 

PROPOSITION 4. Let [ be defined by V x v = jk. A 
necessary and sufficient condition for a solution (v, CO) of the 
system (9) to satisfy the additional condition { = o in &@ is 

[=0 on r=a9. (12) 

Proof: Since (v, w) is a solution of (9) we have 

V*v=V(V.v)+kxV[=kxVo, 

the cross product of which with k yields 

kxV(V.v)= -V([-o) 

and, taking the divergence, leads to 

vy-co)=0 in 9. 

The difference ([ - w) satisfies the Laplace equation. There- 
fore, the condition (12) is necessary and sufficient to ensure 
that w is the vorticity function of the velocity field v. 1 

PROPOSITION 5. Let (v, CO) be a solution of (9) which 
satisfies (12). Then, the velocityfield v is divergence,free: 

v.v=o in 9. 

Proof The function o is the vorticity of the velocity field 
v. From the definition of the laplacian vector (6), it follows 
that V(V v) = 0 in 9, i.e., V. v is constant in 9. From the 
compatibility relation (5) it follows that this constant is 
equal to zero. 1 

Propositions (4) and (5) have the following immediate 
consequence: 

COROLLARY 6. The initial problem (8) is equivalent to 
the following one: 

(OILV2)o=S in 9 

V*v=kxVo in 9 

v=vy on r 

Vxv=ok on r= a9 

(13) 

5. THE INFLUENCE MATRIX METHOD 

5.1, The Superposition Principle 

As mentioned in the Introduction, the influence matrix 
method makes use of the superposition principle for linear 
problems. We are now going to split the initial problem (8) 
into several linear problems that we are able to solve 
without major difficulties. First, let or be a given function 
on rand let us consider the problem [A] defined as follows: 
Find (i, 6) which satisfy: 

(aI-V*)&=&Y in 9 

63=0, on r 
CA1 

1 

V”i=kxVG in 9 

i=v, on r. 

The problem [A] clearly has a unique solution for a given 
distribution We. Let (v, w) be the unique solution of the 
original problem (8) and let (9,cG) be the difference 
(i-v, G- 0). Owing to the linearity of the considered 
problems, (0, 6) is a solution of the homogeneous system: 

(OI-V)O=O in 9 

V*$=kxVc? in 9 (14) 

$=O on r. 
Let us assume that a set of discretization points over the 

domain 9 has been defined and let N, be the number of 
such points which lie along the boundaries. The solutions of 
(14) are then fully determined by the distribution of ci, on 
the N, boundary nodes. They belong to the space spanned 
by the solutions (Qk, Ok) of the elementary problems [Bk] 
(k = 1, . . . . N,) defined by 

(aI-V2)Ci)k=0 in 9 

dk(Yj) = 6kj bw- 
CBJ 

1 

V*O, = k x VQ, in $3 

9, = 0 on r, 

where 6, is the Kronecker symbol. Each of these problems 
clearly has a unique solution which does not depend upon 
the actual time level (n) and should therefore be solved in a 
preprocessing stage. 

By virtue of the superposition principle, the solution 
(v, o) of the problem (8) is sought as a linear combination 
of (?, 6) and of the (Gk, cGk): 

k=Ny 

v=T+ c Aktk 

k=l 

k=Nr 

w=c5+ 1 I,ch,. 

k=l 
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Because of the definition of the functions c.Gkr the coefficients 
Vk>k= l,...,Ny are related to the actual values of the vorticity 
o on the boundary r by 

4Yk) = %Yk) + Ak = OAYk) + A,, vy,er. (15) 

The remaining task is to determine these coefficients in 
order to ensure that the conditions that are not yet taken 
into account, i.e., the continuity equation and the vorticity 
definition, are satisfied. 

5.2. Building of the Injluence Matrix 

At this point, we can use either corollary (3) or corollary 
(6) which would lead to two different matrices. We present 
here the matrix obtained by choosing corollary (6) which 
is the one that can be readily extended to the three- 
dimensional case. 

The coefficients A, are computed in order to ensure that 
the definition of the vorticity (2) is satisfied at the N, dis- 
cretization points Mj that are located on the boundary r, 

k=Nr 

ce- G)(Mi) + 1 Ak(i^, - dk)(“;) = O, Vi = 1, . . . . N,, 
k=l 

(16) 

where T (resp. r^,) is defined by 

v x t (resp. gk) = rk (resp. fkk). 

Equations (16) can be cast in matrix form: 

A.l=f. 

The elements av of the matrix A of order N, are defined by 

aik = (tk - ok)(“i)T i= 1, . . . . N,; k = 1, . . . . N, 

and the elements f, of the vector fare defined by 

fi= -(&&3)(MJ, i= 1 ,..., N,. 

Provided that the unknowns are considered in the right 
functional spaces, the invertibility of the matrix A derives 
from the uniqueness of the solution of problem (8) (see 
Section 9). The unknown vector 1 is then obtained as 

k= A-‘.f. 

The inverse of matrix A is computed in a preprocessing 
stage. At each time step, the multiplication of a N, vector by 
a matrix of order N, is required to obtain the vector L. 

Because it is more economical to twice solve system [A] 
than to keep in central core all the (Gk, Gk) in order to 

achieve adequate linear combinations, the computations for 
one time step At are performed in the following way: 

(1) Compute the solution of problem [A] with a given 
distribution of 6 on the boundary (for instance, the values 
of o at the previous time step, or everywhere 0). 

(2) Compute the difference p-6 at the control 
points Mi. 

(3) Compute the coefficients 2, by multiplying these 
values by A-’ and obtain the true values of the vorticity 
along the boundaries by means of the relation (15). 

(4) Again solve problem [A] with the true boundary 
values of the vorticity. 

The calculation of one time step requires the solution of six 
elliptic equations which will be solved by means of a fast 
elliptic solver (see next section). 

5.3. Another Influence Matrix 

In the previous section the influence matrix has been built 
to enforce the definition of the vorticity at every point of 9. 
From corollary (3) another influence matrix can be built in 
order to enforce the zero divergence at N,- 1 points M, of 
the boundary and the definition of the vorticity at one 
arbitrary point P of 9. The computational process will thus 
be essentially the same as the one previously described. 
With the same notations as in Section 5.2 the influence 
matrix A is defined as 

aik = (V . $k)(Mi), i= 1 , . . . . N,- 1; k = 1, . . . . N, 

a Nr,k = (r;, - c;)k)(p), k = 1, . . . . N,, 

and the elements fi of the source vector fare defined by 

f, = - tv ’ i)(“i), i= 1 , . . . . N,-- 1, 

fN,= -(%-6,)(p). 

It will be shown in the section on results that these two 
techniques give equivalent results within machine accuracy. 

6. NUMERICAL IMPLEMENTATION 

6.1. The Spatial Discretization 

For the sake of simplicity, we assume that the domain 9 
is rectangular and is divided in M x N regular meshes. The 
spatial discretization steps are then: 

Ax=’ 
M’ 

To ensure that the unknown discrete functions belong to the 
right functional spaces, a staggered MAC grid is used. 
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j+l 
J+1/2 

j  

j-1/2 

j-l 

~-312 

j=l 
j-1/2 

j=O 
------ j--1/2 

I- l/2 1+1/2 

i-l I i+l 

FIG. 1. The MAC grid. 

Standard second-order centered differences have been used 
for both first and second derivatives. The collocation points 
for the different unknown functions are defined (see Fig. 1) 
as follows: 

l The velocity component u is computed at nodes 
(i Ax, (j-t 4) Ay) for i=O, . . . . Mandj=O, . . . . N- 1. 

l The velocity component u is computed at nodes 
((i+f)Ax,jAy)fori=O ,..., M-l andj=O ,..., N. 

l The vorticity w is computed at nodes (i Ax, j Ay) for 
i = 0, . ..) A4 and j = 0, . . . . N: 

oij = vi+ l/2,1-~,- 1/2,j- ui, j+ l/2 - uz,~- l/2 

Ax AY ’ 

l The divergence V. v is computed at the center of the 
meshes: ((i+f)Ax, (j+$) Ay) for i=O, . . . . M- 1 and 
j = 0, . . . . N - 1 : 

(V.v) ,+ll2,jt1/2= 
Mi+ kJ+ l/2 - ui, j+ I/2 

Ax 

+ 
vi+ lfZ,j+ 1 - vt+ lf2,j 

AY ' 

6.2. Resolution of the Helmholtz Equation 

The only sensitive point in this resolution is the calcula- 
tion of the convective terms because it makes use of the 
components of the velocity at points where they are not 
computed. For instance, let us consider the approximation 
of C~(UO)/C?X by the following finite difference: 

The points (i+ i, j) and (i - 4, j) are not collocation points 
for the u-component of the velocity. Therefore the 

approximations U are obtained by a bilinear interpolation 
on the values of u at the four nodes that are the immediate 
neighbours of the node (i + 4, j). In our case, owing to the 
regular mesh, this interpolation reduces to the arithmetic 
mean: 

ui+ l/2, j= $C"i, jp l/2 + ui,j+ l/2 + ui+l, jp l/2 + ui+ l.j+ l/Z). 

For similar reasons, oi + 1/2,, is defined as the mean value: 

Oi+ l/2, j  = iC”, + Oi+ 1, j). 

6.3. Discretization of the u-Equation 

l In the x-direction, the standard second-order centered 
difference can be used at each interior point in 9, since there 
are collocation points for u on the vertical boundaries x = 0 
and x= 1: 

a% 
( > s -B,u~=~(ui-l,j-2u,+ui+l,,). 

rJ 

l In the y-direction, standard second-order centered 
differences can be used at each interior point which is not 
adjacent to horizontal boundary: 

1 
“6,,u~=~(u,j-,-2u,j+uii+l). 

AY ’ 

On the nodes adjacent to the horizontal boundaries y = 0, 
the second derivative of u with respect toy is approximated 
by the difference: 

4 
=- t”i,3i2 - 3ui, l/2 + 2ui,0). 

3Ay2 

This approximation is in fact (see [30]) the usual centered 
difference over the points (i, - $), (i, f), and (i, $) in which 
the value of u at the fictitious point (i, - $) outside the 
domain (see Fig. 1) is calculated by the extrapolation: 

ui, ~ l/2 = f(ui,3,2 - 6~,,1;2 + 8ui.o). 

l The y-derivative of u on the boundary y = 0, i.e., the 
vorticity, is computed by using the extrapolated value for 
ui, - 1,2, yielding 

=$ (-Ui,3/2 + 9Ui,1/2 - 8ut.0). 

6.4. Resolution of the Discretized Problems 

Fast direct solvers have been used throughout this work, 
taking advantage of the separability of the equations for the 



408 0. DAUBE 

considered problems. They are called Fourier-Toeplitz 
methods in the literature [31, 321. For instance, in the case 
of the u-component, the discretized equations are written in 
the tensor product basis { 4i @ ej}{ I ‘;;:I:;‘, ~ r, where { +i} is 
the basis of eigenvectors of the second centered difference 
6,, and {ej} the canonical basis in the y-direction. This 
change of basis is performed through a FFT for large 
enough values of M and by matrix multiplication otherwise. 
Obtaining the solution in the tensor product basis then 
requires the resolution of N tridiagonal systems and an 
inverse FFT (or matrix multiplication) gives the results in 
physical space. 

7. THE DRIVEN CAVITY PROBLEM 

The purpose of this section and the next one is, with the 
help of the resolution of two test problems, to; 

l check both the zero-divergence of the velocity field and 
the definition of the vorticity at each time step. 

l perform comparisons with results obtained by classical 
methods. 

As a first test case we consider the well-known driven cavity 
problem (see Fig. 2) in the case of a Reynolds number Re 
equal to 400. The calculation were carried out on a 41 x 41 
or a 61 x 61 grid. The reported results concern, as usual for 
this problem, the vorticity o along the moving wall y = 1, 
the u-component of the velocity along the centerline x = 0.5, 
the streamlines pattern, and the isovorticity contours. 

1.1. Comparison of the Different Influence Matrix 
Techniques 

The purpose of this section is to show that the two 
influence matrix techniques that were described in Section 5 

u=o; v=o 

u=l;v=O 
* 

TABLE I 

/,-Norm of the Differences 

(a)-(b) 

(b)-(c) 

A0 AU AU 

1.3 x Io-‘2 4.0 x lo-l5 2.5 x 1o-‘5 
1.0x lo-l2 2.0 x lo-l6 2.0x lo-l6 

_------- 0-----------*-----------~grld 61x61 
e- 

grid 41x41 

FIG. 3. Time evolution oE * max IV.vl; 0 max lc --o[. 

u=o; v=o 

FIG. 2. The driven cavity: Sketch of the configuration. 

00 0.2 04 0.6 0.8 1.0 

x 

FIG. 4. Vorticity on the moving wall: * Y--w; a case 
0 case(b). 

(a); 
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06 

Y 
04 

00 

-d5 0.0 0.5 LO 

FIG. 5. u-component on the centerline x =OS: t Y--w; a case (a); 
0 case (b). 

give similar results within machine accuracy. Three cases 
are considered: 

(a) { = o is satisfied at the N, points off. 

(b) V.v=OissatisfiedatN,-1 pointsonrand[=o 
is satisfied at the center of the cavity. 

(c) V . v = 0 is satisfied at N, - 1 points on r and [ = o 
is satisfied at point (0.25, 0.25). 

The &norm of the differences do on o, Au on u, and Au on 
v are reported in Table I. These results clearly show that 
these techniques are equivalent, since the differences 
between the three cases vanish within machine accuracy. 

i 

7.2. The Zero-Divergence and the Definition of the Vorticity 

The time evolutions of max IV .vl and max I< - 01 are 
plotted on Fig. 3 for case (c) that has been defined pre- 
viously and for two different grids: 41 x 41 and 61 x 61. It is 
clear that V. v = 0 and i = o are satisfied within machine 
accuracy at each time step whatever the grid size, which 
shows the ability of the method to deal with real unsteady 
flows. The slight decrease in accuracy that is observed for 
the 61 x 61 grid, compared to the 41 x 41 one, is related to 
the use of a library routine to compute the inverse of the 
influence matrix A. Actually, the accuracy of these routines 
worsens with the increasing order of the matrix. 

7.3. Physical Features of the Flow 

Here we compare the results which have been obtained by 
means of the present v--o method with those that were 
computed by a finite differences Y - w  code developed by 
Daube and Ta Phuoc Lot [33]. This code uses a second- 
order scheme for the vorticity transport equation and a 
fourth-order scheme for the stream function equation. 

The distribution of vorticity along the moving wall is 
plotted on Fig. 4 and the u-profile along the centerline 
x = 0.5 is plotted on Fig. 5. It is clear that the results are in 
very good agreement and that the observed differences can 
be related to the order of accuracy of the different schemes. 

The streamlines (Fig. 6) and the isovorticity contours 
(Fig. 7) also show good agreement between the two codes. 
In particular, the present method is able to predict in a 
satisfactory way the corner vortices that exist for this value 
of Re. The stream function Y was obtained in the case of the 
v-o formulation through the resolution of the Poisson 
equation V2 Y = - 0. 

b 

FIG. 6. Streamlines for Re = 400: (a) Y-w; (b) v -w. 
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b 

FIG. 7. Iso-vorticity contours for Re. = 400: (a) Y-w; (b) v  - w. 

8. AXISYMMETRIC FLOW IN A CLOSED CYLINDER 

In this section, we check that the present method can be 
easily extended to axisymmetric flows. 

8.1. Statement of the Problem 

Let us consider a cylindrical tank (Fig. 8) of radius r0 and 
of height H filled with an incompressible viscous fluid of 
kinematic viscosity v. The motion of the fluid is due to the 
rotation at a constant angular velocity Q of the lower lid. All 
the dependent and independent variables can be made 
dimensionless with respect to the length scale rO, the 
velocity scale Qr,, and the time scale l/Q. Therefore the 
flow depends on two non-dimensional parameters: the 
rotational Reynolds number Re = Qri/v and the aspect 
ratio h = H/r,. 

FIG. 8. The flow in a closed cylinder: Sketch of the configuration. 

In cylindrical coordinates (r, 8, z), the radial, tangential, 
and axial components of the velocity are denoted by 
(u, o, w). We assume that the flow is axisymmetric. Thus, the 
Navier-Stokes equations read 

~+!$!d+~~~(f)A.&7d)~ (17) 

( > 
Vlf acil 

U=z (18) 

V2w= -!-g(ru) (19) 

au a(uv)+a(wo) 
at+- & -p2=; v2--$ v, 

( > 
(20) r 

where I is the identity operator and V2 is the laplacian 
operator: 

The continuity equation and the definition of the vorticity o 
as the azimutal component of V x v read 

ah4 + a(rw) = o - - 
ar aZ 

au aw 
m=aZ-ar' 

Boundary conditions. l On the walls the no-slip condi- 
tion holds. For instance, on the rotating lid, this condition 
reads: 

- u(r, 0) = w(r, 0) = 0, Vr E [0, l] 
-v(r,O)=r,VrE[O, 11. 
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l On the rotation axis symmetry considerations allow us 
to write: 

- u(0, z) = u(0, z) = o(0, z) = 0, vz E [O, h] 

- aw/ar = 0, VZ E [0, h]. 

8.2. Implementation of the Injluence Matrix Technique 

The implementation of the technique is very similar to the 
Cartesian case and the same temporal discretization can be 
used. It is easy to prove that it is sufficient to enforce either 
the continuity equation or the definition of the vorticity 
function o on the solid boundary 1” because the relation 
[ = o is automatically satisfied on the symmetry axis r = 0. 
Thus, the influence matrix is built exactly in the same 
manner by means of the discretized divergence or vorticity 
and the only points of the boundaries which are involved in 
this process are the points on the solid walls. 

Therefore, one time step requires the resolution of two 
elliptic systems which are of the type, 

((o+;> 1-V) w=s, 

((o+~)I-v2)u=,, 

( > V2-; 
am u=--- 
IYZ 

V2w = - i g (ro), 

with appropriate boundary conditions. 

8.3. Results for the steady case 

For this flow experimental data [34] as well as numerical 
results (35, 361 are available. They show, for instance, that 
for Re = 1850 and H/r, = 2, the flow tends towards a steady 
state that exhibits two recirculation bubbles (one large and 
the other much smaller) on the symmetry axis. The 
streamline patterns found by Lugt [35], those computed by 
the Y-w code mentioned in Section 7, and those com- 
puted from the vorticity field given by the present method 
are plotted on Fig. 9 and the agreement is very good. 

The w-component along the symmetry axis is plotted on 
Fig. 10 and is compared to the profile obtained by the 
Y - o code previously mentioned. The agreement between 
the two curves is almost perfect. They also compare very 
satisfactorily with the profile given by Lugt [35]. The 
locations where this velocity becomes positive indicate the 
recirculation bubbles. 

Concerning the divergence and the definition of o as the 
vorticity function, similar results to the Cartesian case were 
found and are not reported here, i.e., the quantities V . v and 
[ - o vanish within machine accuracy. 

b 

FIG. 9. Streamlines for Re = 1850 and H/r,, = 2: (a) Y-o; (b) v  - w; 
(c) from Lugt [33]. 

8.4. The Unsteady Case 

As mentioned by Escudier [34] the flow becomes 
unsteady for values of Reynolds number larger than a criti- 
cal value which depends on the aspect ratio of the tank. This 
problem was studied numerically by Daube and Sorensen 
[37] and by Lopez [36]. In particular, it is shown in [37] 
that in the case of an aspect ratio equal to 2, the flow under- 
goes a transition to a periodic flow with a frequency 
approximatively equal to 0.25 times the rotation frequency 
when the Reynolds number is larger than about 2600. This 
feature was also found with the present method. 

Here we present a comparison with [ 373 in the case of an 
aspect ratio equal to 2 and Re = 2800. Let A be the point of 
coordinates (r = 0, z = 0.75h). The time evolutions of the 
axial component w(A) computed by both methods are 
plotted in Fig. 11 and exhibit periodic behaviour which can 
also be seen on their power density spectrum (Fig. 12). The 
period ZZ of the oscillations is reported in Table II. We also 

2 00 

1.50 

N 100 

c 50 

w on the oxis r=O 

FIG. 10. w-profile on the symmetry axis: (a) Y-o; (b) V-W. 
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FIG. 11. Time evolution of w(O,3h/4) for Re = 2800 and h = 2: (a) Y-o; (b) v  - w. 

give the period IP = 17/2x expressed in the number of 
revolutions. In both methods, the time step At is equal to 
0.05 and the observed difference between the periods is 
equal to 0.32, i.e., approximatively six times the time step. 
This difference may be significant and therefore the 
influence of the temporal discretization has to be checked. 

In place of the ABCN scheme, another O(At’) discretiza- 
tion was used which was proposed by Vane1 et al. [25]. 
In this scheme, the time derivative at (n + 1) At is 
approximated by 

af ( > 
n+l 

at 
E& (3f”+l -4f”+f+‘). 

LOG10 1 SD IUI Q I 

T I -1.0 
-2.0 

-3.0 

-4.0 

-5.0 

-6 .O 

-7 .o 

-,I:g, , , , I , , , . I , , , , , 

6.0 .OS .I0 .I5 

FREOUENCY 

(4 

Let CV be the convection terms. Using the notations of 
Section 3, we have 

cr=g;S”= -Re(2CV”-CV+‘). 

With this new time discretization, the period was found to 
be equal to 25.56, i.e., within less than one time step from 
that obtained by the ABCN method. Hence the observed 
differences between the Y- o results and the present ones 
are really significant and may be attributed to the different 
nature of the two methods. 

LOG10 lSDlwr131 

-7.0 - 

-6.0 - 

-9.0 - 

-10.0 ’ ’ ’ ’ I ’ ’ 2 ’ I * 3 8 8 ’ 
0.0 -0s .I0 .I5 
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w 

FIG. 12. Density power spectrum of the signal of Fig. 11: (a) Y-w; (b) v  - w. 
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TABLE II 

Period of the Flow Oscillations for Re = 2800 

Method 17 II* 

v - to 25.52 4.06 
Y-tu 25.84 4.11 

9. ON SOME DIFFICULTIES 

Two main difficulties that arise during the course of this 
work have to be addressed briefly, although the basis of the 
vorticity-velocity formulation, especially corollaries (11) 
and (13) are not affected by them. 

9.1. Stability of the Scheme 

The temporal discretization is a semi-implicit one; i.e., the 
diffusion terms are treated implicitly, whereas the nonlinear 
terms are treated explicitly. Therefore this scheme has more 
severe stability criteria than purely implicit schemes. As an 
example, the resolution of the driven cavity flow at Re = 400 
on a 41 x 41 grid, required a time step live times smaller 
than the time step needed for the implicit treatment of the 
Y - w formulation (d t = 0.02 instead of 0.1). Likewise, the 
time integration of the flow equations in the closed cylinder 
at Re = 1850 was carried out with a time step At = 0.05 
in the case of the influence matrix technique, whereas a 
time step of 0.1 could be used in the case of the Y-w 
formulation. 

9.2. On the Use of a Staggered Grid 

As many other authors, we found it necessary to use a 
staggered grid as described in Section 6. Every attempt to 
use a nonstaggered grid without special care in conjunction 
with the central differences led to either the blowing up of 
the computations or to nonphysical flows (V.v #O and 
Vxv#ok). 

Basically, these difficulties are of the same nature as 
those that are encountered when dealing with the velocity- 
pressure formulation of the Navier-Stokes equations. They 
arise from the fact that the continuous operators and their 
discrete counterparts do not satisfy the same identities, 
especially when second-order operators are involved as 
composition of first-order ones. 

Let us denote V, the centered first difference operator on 
a nonstaggered grid. In the composition of two operators, 
e.g.,V,.(V,)orV,(V,.),nodes(i,j), (if2,j),and(i,jk2) 
are involved, whereas nodes (i, j ), (i f 1, j), and (i, j f 1) are 
involved in the usual discretization of the laplacian Vi. That 
means that with such a discretization, there is no discrete 
counterpart of the continuous vector identity V . Vf = V’f, 
i.e., V, . (V,f) # Vif: This fact is the basis of the oddeven 

decoupling for the pressure in primitive variables formula- 
tion. In our case, the proofs of corollaries (3) and (6) are 
based upon the extensive use of the vector identity (6), 
which defined the laplacian vector, and of classical vector 
analysis relations. 

It is therefore necessary to use a grid and discrete 
operators (curl, gradient, and laplacian) so that an identity 
analogous to (6) is satisfied in addition to the usual rela- 
tions V, . (V, x v) = 0 and V, x (V, f) = 0. If doing so, the 
discretized version of problem (8) is fully equivalent to the 
discretized version of problem ( 11) or ( 13). This means, for 
instance, that if the definition of the discrete vorticity is 
satisfied on the boundary, it will also be true at the interior 
nodes. The use of a MAC grid, in conjunction with the 
discrete operators defined in Section 6, is a well-known 
straightforward way to ensure that the discrete analogue of 
the vector identity (6) is satisfied. This is the reason why we 
chose this kind of grid in this work. However, it is clear that 
this restriction will have to be overcome if we want to extend 
this work to configurations involving curvilinear coor- 
dinates and/or nonuniform grids. Moreover, the difficulties 
will be obviously worse in real 3D flows. 

These problems have already been considered by many 
people in the case of the formulation of primitive variables. 
The papers by Rhie and Chow [38], Schneider and Raw 
[40], Strikwerda [39], and more recently by Armlield [41] 
are of particular interest and the collocated schemes that 
they designed are more and more widely used. A similar 
work has not yet been done in the context of the 
velocity-vorticity formulation. The theoretical concepts- 
as the symbol of an operator (see [39,41])-that are 
underlying these schemes are likely to be used to design 
nonstaggered schemes which would preserve the desirable 
features of this work, i.e., the zero divergence and the delini- 
tion of the vorticity as the curl of the velocity. 

CONCLUSIONS 

In this paper we have shown that it is possible to solve the 
2D incompressible Navier-Stokes equations written in 
velocity-vorticity formulation by means of an influence 
matrix technique. At each time step, a strong coupling 
between the vorticity and the velocity field is enforced and 
the continuity equation, as well as the definition of the vor- 
ticity, are satisfied within machine accuracy. Therefore the 
present method allows us to study accurately and efficiently 
unsteady flows, as was shown for the two test cases 
considered. 

Beyond this fact, we want to emphasize the necessity to 
obtain, at each time step, either a correct definition of o as 
the vorticity of the velocity field v or the vanishing of the 
divergence on the solid boundaries. Actually, it is believed 
that this is the crucial point when using the v - w formula- 
tion, whatever the numerical technique that is used. 



414 0. DAUBE 

The main question that arises now is the extension of this 
technique to 3D flows. In addition to the difficulties which 
were previously mentioned concerning the use of a MAC 
grid, the tractability of an influence matrix has to be con- 
sidered because of its large size. This difficulty may be partly 
avoided for flows with one direction of periodicity. In this 
case, the use of Fourier series expansions in this direction 
avoids the use of a too-large influence matrix that actually 
reduces to a sequence of Nk 2D influence matrices that can 
be “easily” inverted, where Nk is the number of Fourier 
modes that are considered. Another important point that 
has to be noted is that the boundary conditions that have to 
be enforced by means of this influence matrix are not so 
“obvious” as in the 2D case [ 141. In particular, special care 
has to be taken in order to ensure that the vorticity vector 
field o is soleno’idal. 
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